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Abstract

Most implementations of a radix-2 fast Fourier transform on large scientific computers

use algorithms that involve memory accesses whose strides are powers of two. (The term

str/de means the memory increment between successive elements stored or fetched). Such

strides are unacceptable for recently developed supercomputers, particularly the Cray-2,

because of serious difficulties with memory bank conflicts.

This paper describes an algorithm for evaluating the fast Fourier transform that

avoids this difficulty and thus could provide the basis for implementations that more

fully utilize the power of the Cray-2. A Fortran program implementing this algorithm is

included, and timing comparisons with the Cray assembly-coded library subroutine are
shown.

The author is an employee of Sterling Software, Inc., under contract to the Numerical

Aerodynamic Simulation Projects Office at NASA Ames Research Center. This work

was performed under contract NAS2-11555.



Introduction

A "fast Fourier transform" (FFT) is merely a computationaUy efficient technique to

evaluate the discrete Fourier transform (DFT). The DFT and the inverse DFT of the

n-long sequence z - (x0, Xl,X2,... ,z,_-l) are mathematically defined as

Tt--1

Fi(x) = _ xk_-2,'j_/_, 0 <_j < n
k----0

F_-*(z) I "-*= - _ zke 2"i_k/", 0 < j < n
n kin0

The second formula is said to be the inverse DFT because it can be easily shown that

performing the first operation followed by the second operation recovers the original

sequence. Suppose n can be factored as n = Im. Write j =pm + q and k = rl + s, where

p and s range from 0 to l - 1 and where q and r range from 0 to m - 1. Then the formula

for the DFT may be written as

i--1 m--1

F,.+,(x) =
s=0 r=0

I-1 m-1

= _ _ z,,+.e-_'ir"l"e-_'_q"l"e -2"_°1_
s=0 r=O

1-1 m-1

= __, __, z,l+°e-2"iP°/ze-2"_'/'% -2_iq°/_
$ffiO rffiO

rn--I
[

= | ___ (z,t+°e-2"_iqsln)e -2"iq'l'n e -2'_ip°lt, 0 <_ p < l, 0 <_ q < m
°=0 !. r=0

Thus the computation of an n-point DFT has been reduced to performing a series

of complex multiplications,/-point DFTs and m-point DFTs. By repeating this process,

an n-point DFT can be reduced to a series of complex multiplications and p-point DFTs

for various prime numbers p.

The Radix-2 FFT

The most frequently used application of the FFT technique is for values of n that are

powers of two. Therefore in the following four sections of this paper it will be assumed

that n = 2 "_. In this case the above technique yields the following algorithm for evaluating

the radix-2 DFT. Set Xo(j) = zj, 0 < j < n. Then iterate the following calculations
for t from 1 to m:

X,(j2t + k)

St(j2 t + 2 '-I + k)

for 0 < j < 2"-',

Xt-l(j2'-* + k) + a_tXt_l(j2 t-_ + n/2 + k)

Xt_,(j2 t-' + k)-ctktXt__(j2 t-I + n/2 + k)

0 <_ k < 2 t-1
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where at -- e-2_q2'. The final results X,,(k), 0 < k < n are then equal to the Fk(z)

in the original formula above for the DFT. Tiffs algorithm is known as the Stockham

formulation of the FFT.

Note that the straightforward evaluation of the original formula for the DFT re-

quires 8n 2 operations, even if it is assumed that all powers of a -- e -2_i/_ have been

precalculated. The Stockham FFT algorithm produces the same result array in only

5n log 2 n = 5m2 '_ arithmetic operations. For large n this work factor represents a huge

savings over the straightforward algorithm. Thus it is not surprising that this and similar

FFT techniques have been applied in a wide variety of numerically intensive fields, such

as digital signal processing and computational fluid dynamics.

In order to conserve memory, many computer programs implementing the fast Fourier

transform modify the above algorithm by overwriting the results of the right hand sides of

the FFT equations into the same array. If this is done with the proper array indices, the

result data values are correct, but a "bit reversal" permutation is necessary. This means

that element Fk(x) is found in X,,(k'), where k' is the index whose binary expansion is

reversed from that of k (i.e., if n = 64 and k = 19 = 0100112, then k' -- 50 --- 1100102).

Many implementations of the FFT also precalculate the powers of _ in a one-time

initialization before the FFT is called with any data. Typically these powers are placed

in an array U such that U(k) = _k, 0 <_ k < n/2. Then the expression _,_ is evaluated

by merely recalling U(k2 "-_) from memory.

The most common procedure to perform one iteration of the FFT above is to incre-

ment j in the inner loop and to increment k in the outer loop. For most computers this

ordering of the loops is faster because the fetch of the power of _ from U may be done

in the outer loop, since it does not depend on j.

Implementation of the FFT Algorithm on the Cray-2

The Cray-2 is the first of a new generation of vector supercomputers that feature very

large main memories, in addition to speeds that equal or exceed previous supereomputers.

The Cray-2 that has now been installed at NASA Ames Research Center features four

central processing units (CPUs), together with over 268 million 64-bit words of main

memory. This amount of main memory is greater than the combined main memories of

all previously delivered Cray supercomputers. Each CPU in the Cray-2 has eight 64-

word vector registers plus an even richer set of vector instructions than the Cray X-MP

computers. The clock period of a Cray-2 CPU is only 4.1 nanoseconds, as compared

to 9.5 nanoseconds for the X-MP line, so each Cray-2 CPU is potentially twice as fast

as on the Cray X-MP. However, in practice such speedups are difficult to attain due to

memory speed limitations.

For large memory computers like the Cray-2, conserving memory is of much lower

priority than making sure that the full computational speed of the computer is being

utilized. Thus it appears pointless to attempt to perform an FFT in place (i.e., by

overwriting the input array as described above). In fact, the Cray library FFT subroutine
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available for the Cray X-MP computers, which have much more limited main memory

than the Cray-2, has for years utilized a separate array for the left-hand-side at each

iteration to avoid the need for a bit reversal permutation. It is certainly clear that any

truly high-performance FFT for the Cray-2 needs to use a separate array to avoid the

cost of a bit reversal permutation.

The most significant performance issue for any program to.be run on the Cray-2 is

to insure that memory bank conflicts are avoided. The main memory of the Cray-2 is

organized into 128 interleaved memory banks. In this way a vector memory fetch with

unit stride can return one word of memory every CPU clock period after the initial startup

delay (provided there is no conflict with memory accesses by other CPUs). Although the

Cray-2 has a large number of memory banks, the speed of the main memory circuitry

is significantly slower than its CPU. As a result, the fetch of a single word of memory

requires over 50 CPU clock periods, and the memory bank containing the word is reserved

for most of this period of time. Thus, if a vector memory fetch has a stride that is a

multiple of 128, then every element fetched resides on the same bank, and the overall

speed of the vector fetch drops by a factor of nearly 50. Even if the stride is only

two or four, the speed of the vector fetch is sharply reduced due to section conflicts,

a consequence of the organization of memory into four sections. Thus it is imperative

that power-of-two memory strides be avoided on the Cray-2, especially in a heavily used

routine such as an FFT. The same conclusions hold for strides that are divisible by

powers of two.

Power-of-two memory strides result in performance degradations on other systems as

well. For instance, a number of systems are designed for primarily unit stride memory

operations, and any nonunit stride results in a performance reduction. This is true, for

instance, on the Cyber 205, the Fujitsu VP-400, and the NEC SX-2. In addition, all of

these systems suffer additional performance reductions due to bank conflicts for memory

strides divisible by large powers of two, although the reductions are not as dramatic as

on the Cray-2.

Another impetus for finding an algorithm that avoids nonunit memory strides is that

analyses of the Cray-2 indicate that it may be necessary to utilize local memory to

fully tap the high levels of performance (over 250 million floating-point operations per

second on a single CPU) that the machine is capable of attaining. Local memory is a

register cache of 16,384 words contained within each CPU. Because of its fast access

time, algorithms that effectively utilize it avoid the main memory speed limitations and

may run significantly faster. Unfortunately, the hardware design of the Cray-2 CPU only

allows for stride one vector access to local memory. Thus it is likely that a very high

performance FFT on the Cray-2 will need to employ a stride one algorithm.

An FFT Without Power-of-Two Memory Strides

Unfortunately, the radix-2 FFT algorithm described above is riddled with power-of-

two memory strides.In fact,in the usual implementation of thisFFT, in which the inner



loop incrementsj and the root of unity a_ is a loop constant, the stridesof the array

storesand fetchesin the inner loop are 2tand 2t-l,respectively,where t is the iteration

number. Thus the strideof every array store isa power of two, and except for the first

iteration,the strideof every array fetch isa power of two. Furthermore, for FFTs with

m greater than 12, most memory accesses have a stride that is a multiple of 128, the

worst possible case for bank contention. Other formulations of the radix-2 FFT have

similar difficulties with power-of-two strides. Clearly this situation is unacceptable for

computers such as the Cray-2.

One way to avoid this power-of-two stride problem is to employ a radix-3 or radix-5

FFT algorithm. In this way all strides are odd numbers, and bank conflicts are completely

avoided. However, this solution requires a drastic revision of many existing computer

programs, the vast majority of which utilize data arrays whose dimensions are powers

of two. Hockney and Jesshope [4, p. 309] suggest that the stride problem be handled

by inserting "spacers" in the data array. While such a technique may be acceptable

for a special-purpose program, it is not a practical alternative for a general-purpose

library FFT, since every Fortran calling program has to employ the same complicated

indexing scheme. Fornberg [3] describes a unit stride algorithm for the CDC 205, but this

algorithm is not suitable for the Cray-2 since it relies on long vector compress-expand

operations.

The stride problem may be solved in many applications by performing simultaneous

FFT operations on a two-dimensional array of data. In this manner, the stride of vector

accesses is either unity or the first dimension of the array, depending on which dimension

the FFTs act upon. Unfortunately, not all applications permit simultaneous FFTs

some require very large single FFTs. Furthermore, many application codes that do

permit simultaneous FFTs have power-of-two array dimensions, and simultaneous FFTs

along the second dimension result in bank conflicts just as serious as in a one-dimensional
FFT.

A preferable method of dealing with the stride difficulties mentioned above is to

perform the FFT as described above, except with the inner loops reversed, so that k is

incremented in the innermost loop. However, even in this case a power-of-two memory

stride remains. This is because the array U containing roots of unity must now be

accessed in the inner loop, and the stride of this access is 2 "_-t, which is very large in

the initial iterations of the FFT. However, this ordering of the computation does have

the advantage that the strides of the four other array accesses are all unity (provided

that complex data is stored so that the real and imaginary parts are separated and not

interleaved as is the usual custom).

This analysis suggests that the second ordering of the inner loops is superior for the

Cray-2 and similar computers provided the problem of the stride in the array U of roots

of unity can be solved. To that end, it is proposed that these powers of a be stored

in a different manner than is the usual custom. Instead of storing all the powers of

from 0 up to n/2 - 1 in U and indexing U with power-of-two strides, it is proposed that
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the powers of c_ needed at each iteration be stored in a separate section of the array, as
follows:

v(1)
u(2), u(3)
v(4), u(5), _;(6), v(T)

= 1

= 1, i

= 1, v'_+iv_, i, -v_+iv_

2 t-I --Iu(2'-_), u(2 ,-_ + _), ... u(2'- 1) = 1, ,_,, ,_,_,..., ,_,

, 2 2 m-1-1u(2_-1), u(2_-1 + 1), ... u(2_- 1) = 1, _, _, ..., _

Clearly such a storage scheme wastes some memory, since each section includes as a

subset the elements of all previous sections. However, the total storage required for the

U array with this scheme is only 2 m - 1 complex cells, which is only twice the amount

normally required. Since the Cray-2 has ample memory this is not a significant problem.

Once the array U is filled in this manner (with real and imaginary parts separated),

then all vector stores and fetches in the innermost loop have unit stride, and the oper-

ations suffer no delays due to bank or section conflicts. The only factor impeding the

performance of this scheme is that the vector length of the inner loop is 2 t, which is very

short for the first few iterations. For an implementation using local memory, this is not

a serious issue, because startup times for local memory fetches are quite short. However,

for an implementation using main memory this scheme is not optimal because the very

short vector lengths in the first few iterations are just as deleterious to performance as

are power-of-two memory strides.

A Mixed Strategy Algorithm

In the main memory case a slight modification of this scheme is somewhat faster.

Recall that in the first (and most common) ordering of the inner loops, the strides of

memory accesses during the first iteration are one and two, respectively, and the vector

length is large (n/2). In the second iteration, the strides of memory accesses are two and

four, which results is some slowdown on the Cray-2, but the vector length is still fairly

large (n/4). These facts suggest an alternative procedure for evaluating the FFT -- use

the first ordering scheme for the first few iterations, and then use the second ordering

scheme for all additional iterations. In this way, catastrophically short vector lengths

and catastrophically bad strides are both completely avoided.
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A Radix-4 Enhancement

The performance of a power-of-two FFT can be further enhanced on most state-of-

the-art supercomputers by extending the basic FFT algorithm to the "radix-4" version.

This algorithm is as follows. Let n = 4". Set Xo(j) = xj, 0 <_ j < n. Then iterate the

following calculations for t from 1 to m:

Co = Xt_l(j4 t-1 + k)

Cl -- _X,-l(j4 '-1 -}-rl/4 -{- l¢)

c2 = fl_kXt_,(j4'-' + 2n/4 + k)

c3 -" _3kXt_l(j4*-' + 3n/4 + k)

do = Co + c2

dl - co - c2

d2 -" cl +c3

dz = i(Cl-C3)

Xt(j4 t+k) = d0+d2

Xt(j4' + 4 t-l + k) = dl + d3

Xt(j4 t+2.4 t-l + k) = do-d2

Xt(j4'+3.4 '-l +k) = dl-d3

for 0<j<4 "-t, 0<k<4 t-1

where fit = e-2_/4'. The intermediate calculations have been spelled out in detail to make

completely explicit some time-savings factorizations that permit efficient computation.

The main advantage in utilizing a radix-4 algorithm for a power-of-two FFT is that

many supercomputers, including the Cray-2, function with vector registers within the

CPU that are significantly faster in operation than the main memory circuitry. Thus it

follows that maximum performance is obtained by minimizing the amount main memory

fetches and stores for a given amount of computation. This radix-4 algorithm in effect

performs a pair of radix-2 iterations with the same number of main memory operations,

and thus the performance is improved. In the case of the Cray-2, which has largest

ratio of CPU speed to memory speed of any current supercomputer, this improvement

is significant.

If the radix-4 algorithm is performed by incrementing k in the inner loop, then all

strides are unity as above. It only remains to precalculate the array U of roots of unity
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in a manner entirely analogous to the radix-2 case:

U[1] =

U[2], U[3], U[4], U[5] -- 1, V'2 + iV"2, i,-v/2.+-iv/2

U[(4'-* - 1)/3 + I], U[(4'-* - 1)/3 + 2],

•.-, U[(4'- I)/3] = I, _,, _i "', _,_'-'-'

u[(4"-I- i)/3+ I],u[(4--I- 1)/3+ 2],
.... [_4 "n-* --1, u[(4" 1)/3] = 1, _.., _i,-'-,_"

Note that the storage requirement for the array U is even less than for the radix-2

algorithm - only (4" - 1)/3 complex cells are required, which is only one third of the

radix-2 requirement for a transform of comparable size.

Fortran Implementation

The appendix contains the listing of a Fortran subroutine that implements the FFT

using a radix-4 mixed strategy algorithm as described above. Table 1 compares the

performance of this Fortran subroutine with the assembly-coded, optimized library sub-

routine provided by Cray Research, Inc. The column headed "Order" gives the value

of m, where n = 2" is the length of the transform. The next four columns contain the

average CPU time in seconds and the average root-mean-square (RMS) error for ten

trials of the two FFT programs. The errors are measured by performing ordinary FFTs

followed by inverse FFTs and comparing the results with the original data. The last two

columns give the ratios of the CPU times and the RMS errors, with ratios greater than

one indicating faster performance and smaller errors by the new algorithm.

Conclusions

The table results indicate that the Fortran implementation of this algorithm is as

much as 31% faster than the assembly-coded Cray library subroutine. Presumably an

assembly-coded version of the new algorithm would compare even more favorably, espe-

cially for smaller FFT sizes, where the Fortran subroutine linkage significantly increases

the run time. Further improvement might be possible by employing a radix-8 algorithm.

The RMS error statistics in the table reveal another, completely unanticipated advantage

of the new program: it is significantly more accurate than the library version. In one

case it is 100 times more precise.

A side benefit of this new algorithm is that once the array U has been initialized with

a certain value of the order rn, then the subroutine may be called to perform an FFT for
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New Algorithm
Order CPU Time

6 0.000085
7 0.000122
8 0.000202
9 0.000418
10 0.000828
11 0.001633
12 0.003400
13 0.007523
14 0.015750
15 0.031960
16 0.066081
17 0.143396
18 0.300444
19 0.616269
20 1.245387

[ RMS Error
3.9705x10 -15

4.8336x10 -15

5.8956x10 -15

6.1882x10 -15

6.8713x10 -15

7.0026x10 -15

7.6461x10 -15

7.8237x10 -15

8.4909x10 -15

8.5684x10 -15

9.1314x10 -15

9.2125x10 -15

9.7404x10 -15

9.7929x10 -15

1.0335x10 -14

Cray Library

CPU Time [ RMS Error
2.7308 x i0-15

3.8524x 10-15

5.2191xlO -15

5.4665x 10-15

6.5606x 10-15

1.0791x10 -14

1.2639x 10-14

3.5257x 10-14

5.4208x 10-14

2.0667x 10-13

2.4869 x 10-13

6.3953 x 10-13

9.9882×10 -13

7.3610x 10-13

4.4930 x 10-13

Time

Ratio

Error

0.000060

0.000114

0.000240

0.000504

0.001041

0.002142

0.004400

0.009011

0.018667

0.037816

0.078508

0.159578

0.335957

0.671813

1.435486

0.7090

0.9365

1.1895

1.2049

1.2571

1.3118

1.2942

1.1978

1.1852

1.1832

1.1881

1.1128

1.1182

1.0901

1.1526

0.6878

0.7970

0.8853

0.8834

0.9548

1.5410

1.6530

4.5064

6.3842

24.120

27.235

69.420

102.54

75.167

43.474

Table 1: Comparative Timings and Errors

any order less than or equal to this value. In contrast, Cray's library subroutine requires

its working array to be re-initialized whenever the order rn changes. Initialization times

are not included in the timings in Table 1. If they were, the new algorithm would of

course compare even more favorably.
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